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M E C H A N I S M  OF C O A G U L A T I O N  O F  D I S P E R S E  E L E M E N T S  IN M E D I A  I S O L A T E D  

F R O M  E X T E R N A L  A C T I O N S  
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A physical model of the experimentally observed coagulation (the mutual approach) of spherical 
liquid, solid, and gaseous disperse elements (of diameter of up to 1 cm) in polar liquid and 
viscoelastic thixotropic matrices when the system is completely isolated from the external forces 
and the gradient temperature and concentration fields is proposed. It is shown that a weak stress- 
field gradient is formed in a polar liquid or viscoelastic matrix in the presence of interphase 
tension at the matrix-spherical disperse element interface, i.e., when the capillary pressure is 
negative at the convex boundary of the matrix. If the second disperse particle enters into this 
field, the resulting force acts on it in the direction of the first particle, thus ensuring their 
coagulation over large time lapses. 

The author performed experimental studies dealing with the behavior of two spherical disperse elements 
(drops in a low-viscous liquid matrix, solid particles in a high-viscous liquid matrix, and air pores in an elastic 
gel) in the case where the system is completely isolated from external actions [1, 2]. In addition, under similar 
conditions, the stability of the structure of coarse-disperse emulsions was considered at a volume concentration 
of drops not smaller than 0.2 and a drop diameter of 1 cm. It was shown that  within the framework of those 
studies, in the case of complete isolation of two or more disperse elements from the external force and the 
gradient temperature and concentration fields, these elements are attracted together to a complete contact 
(coagulation) if the initial distance between them is of the order of their dimensions or smaller. The coagulation 
period is rl ..m 1 h if the drops interact in a fresh alcohol-water solution, r2 ~ 100 h for solid spheres in glycerin, 
and r3 is almost one order of magnitude greater than r2 for pores in the gel. The question of the mechanism 
of mutual approach of disperse elements (DE) remains open. In the present study, an approach is proposed 
to construct a spherical model of this process. 

1. The coagulation processes studied in [1, 2] occur in the media isolated from external actions; 
nevertheless, the DE are attracted together, i.e., a thermodynamic flow occurs and, hence, according to 
the Onsager principle, there exist thermodynamic forces inducing this flow. As follows from the data of [1, 
2], the velocity of DE approach in a viscous medium does not decrease during coagulation (only at the last 
stage does the particle velocity decrease slightly because of increase in the forces of their mutual electrostatic 
repulsion). Therefore, the particle is influenced on the entire path of its displacement, i.e., it moves in a 
certain gradient physical field. We shall analyze the nature of this field. It follows from the general condition 
of thermodynamic equilibrium of an isolated system [3] that a system that  is isolated from external actions can 
be in a state of thermodynamic equilibrium if the following two conditions are fulfilled, namely: macroscopic 
motions cannot occur in the system, i.e., the pressure is the same at all points in the medium; the temperature 
is the same in all the elements of the system. In other words, the temperature and pressure fields should be 
gradientless in an isolated, thermodynamically equilibrium system. In the experiments of [1, 2], the DE are 
attracted together. Hence, by definition, the isolated system is in a thermodynamically nonequilibrium state 
and at least one of the above conditions is not satisfied in this case. Since the temperature field is supported 
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by a uniform (gradientless) field during the experiment, the DE can be attracted together due to only the 
pressure-field gradient in the medium. 

We shall consider the mechanism of formation of a gradient pressure field in a condensed matrix- 
spherical disperse element system isolated from external actions. In real conditions, owing to atmospheric 
pressure, a hydrostatic background P0 is always present in the matrix (if the gravity is omitted). In addition, 
if the interphase-tension coefficient 7ij is not zero at the matrix-spherical DE interface, a jump in pressure 
occurs at this interface, so that the pressure is equal to 

P. = Po - Pc = Po - 27i j /Ro (1) 

at the convex surface of the matrix [4]. Here Pc = 27i1/R0 is the capillary pressure and R0 is the DE radius. 
The question arises how this jump affects the pressure field in the matrix in the vicinity of the DE. 

In many studies [5, 6], there are indirect data  showing that water should possess not only volume but 
also weak shear elasticity. The point is that molecules of polar liquids (water, alcohols, etc.) have a high degree 
of association [7] owing to the hydrogen bonds (H-bonds) and form skeleton structures in a quiescent state. 
The fact that the H-bond energy is 5-9 kcal/mole, i.e., one order of magnitude greater than the energy of the 
van der Waals interaction and a factor of 5-6 smaller than the energy of the chemical bonds, allows one to 
judge the strength of these structures. This made it possible to assume that the structural character of polar 
liquids, which is due to the H-bonds in a quiescent state, should ensure a certain shear elasticity during a 
very weak and slow deformation. Apakashev and Pavlov [8] showed experimentally that water behaves like a 
medium with a very low strength limit and a shear modulus G of the order of 10 -6 Pa at very slow deformation 
rates (of the order of l0 -3 sec-1); we note that G = 1 Pa for glycerin. 

Thus, since polar liquids such as water, glycerin, and a gel, which is an elastic thixotropic medium, 
were used in the experiments of [I, 2] as the matrices, with allowance for the fact that the characteristic rates 
of DE coagulation are smaller than 10 -4 cm/sec, the  matrices can be regarded in these conditions as elastic 
media which possess weak shear strength. Consequently, the problem of the effect of the jump in pressure at 
the DE boundary (1) on the pressure field in a matrix can be treated within the framework of the theory of 
elasticity. 

2. Using the known principle of hardening, we remove a spherical volume of radius R0 from an infinite 
condensed elastic medium and fill the cavity with a certain material i having interface tension 7ii with the 
ambient medium j .  We consider a model problem of generation of a stress field in an infinite isotropic elastic 
medium subjected to a constant hydrostatic pressure P0 and containing a spherical macroinclusion (sphere) 
of radius R0 with interphase-tension coefficient 7ij- 

Since bubble cavitation begins to develop in a real liquid when P0 falls off to the level of pressure 
of the saturation vapor P v ,  we assume that P0 > P v  in the liquid phase and P0 ~> 0 in a solid matrix. If 
the medium were homogeneous, a uniform stress field a = -P0 would form in its entire volume. However, 
since the medium contains a sphere of radius R0, the pressure P.,  which is due to the hydrostatic pressure 
P0 and the capillary pressure Pc at the interphase matrix-sphere interface, act on the spherical boundary of 
tile matrix in the general case. Locating the origin of the spherical coordinate system (r, 0, ~p) at the center 
of the sphere, one can write the value of the radial stress component at the spherical boundary of the matrix 
in the form 

arr[r=R ~ = - P * ( P o , P c )  (2) 

according to the equilibrium condition. 
We shall consider the classical elasticity problem with the use of the definition of the stress field in a 

medium containing a spherical inclusion of radius R0. Condition (2) is satisfied at the boundary r = R0 and, 
hence, the system is in equilibrium and its deformation u(ur,  uo, u~) is directed along the radius and depends 
only on r. It follows from the equilibrium condition, which is of the form [9] Vdiv u = 0 in this case, that 
u -= ar  + b/r2; as a result, with allowance for spherical symmetry, one can write the strain-tensor components 
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in the form 

urr  = a -- 2 b / r  3, uoo = u ~  = a + b / r  3. (3) 

Subst i tut ing the first relation from (3) into the expression which describes the generalized Hooke's law 

U l m  -t- U k k ~ l m  , 
a i m  - -  1 "t- U 1 - 2 u  

where E is Young's modulus  and u is the Poisson ratio, and taking into account the  boundary condition 
(2), expression (t) ,  and the condition at infinity ar t  = -P0 ,  we obtain the  following relation which 

�9 . . i r - - - * o ~  

determines the  gradmnt field of radial stresses m the matrix in the vicinity of the sphere: 

ar t  = - P 0  - (P, - P0)/~ a (~ = r /n0) .  (4) 

It follows from (4) that  the inequality P.  7 ~ P0 is the condition for the formation of a gradient stress field 
in the medium,  i.e., the field that  is necessary to create the thermodynamic forces in the  medium which are 
responsible for the rmodynamic  flows (the motion of the inclusions in this case). 

We shall analyze the  solution (4) for all the possible relations between the physical parameters of the 
matrix and the  sphere, assuming that  the subscripts 0, 1, and 2, which determine the aggregate states of the 
matrix i and the sphere j ,  refer to the gas, the liquid, and the solid elastic material ,  respectively. Since a 
certain store of free (surface) energy always exists at the interface of two immiscible media,  we have 7ij > 0. 

Wi th in  the framework of the problem considered, the following cases are of interest: i = 1 and j = 0 
(a bubble in a liquid), i = 1 "and j = 1 (a drop in a liquid), i = 1 and j = 2 (a solid particle in a liquid), and 
i = 2 and j = 0 (a gas pore in a solid elastic medium). In these cases, the conditions at the matr ix-sphere 
interface form the gradient  stress field (4) in the matrix. It is clear that  the stress gradient  will be insignificant 
in hydromechamic  problems too and, generally, these weak inhomogeneities of the  stress field are not taken 
into account in the theory of elasticity. [For example, in the case of a drop in a liquid, even if R0 ~< 10 -2 cm, 
with allowance for the fact that  710 < 10 .2 N/cm and 3'11 < 710 for any liquid, 'we have 1 ( 2 7 1 1 / R o ) / P o l  << 1 
for P0 = 105 Pa.] Correspondingly, a weak stress-field gradient entails a weak mass transfer; however, these 
fluxes becomes significant over large t ime lapses [1, 2]. 

3. As an example,  we est imate the force by which the gradient stress field 6~rr(r) formed around the 
sphere D1 (Fig. 1) acts on the sphere D2 located in this field. For simplification,we assume that  both spheres 
located in a liquid matr ix  have the same radius R0. There is no gravity field, but  the pressure P0 is applied in 
the liquid m e d i u m  at infinity�9 The initial distance between the spheres or drops for definiteness is l0 = rl  - 2R0 ,  
where rl is the  initial distance between the centers of these spheres (Fig. 1). 

In the  first approximation,  we assume that  3'11 > 0 at the boundary of the first drop, and the interphase 
tension on the  surface of the second drop (D2) from the side of the liquid matr ix  is completely blocked by a 
layer of a surfactant ,  so tha t  "/11 = 0. The  diagram of the radial stresses in the system is determined only by 
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the condition at the boundary of DI: 

( 2"7111) 
a r t = -  Po R0 ~3 �9 (5) 

We calculate the resulting force applied to D2 at the initial moment of time in the gradient stress field 
of the drop D1. To do this, we first determine the radial stresses O'rr(~ ) on the surface of D2, where ~ is the 
coordinate of the surface point in the (r, 0, ~) coordinate system whose center is aligned with the center of 
D1 (Fig. 2). From the above geometrical constructions [AO1AB and AO2AB for the right hemisphere of the 
sphere D2 (Fig. 2a) and ~ 0 1 D E  and AO2DE for the left hemisphere (Fig. 2b)], the coordinate ~ of the point 
on the surface of the sphere D2 is determined in the form 

~ = Ro(l + ~21+ 2~l cosa) U2 (O <<. a <~ ~r, el = rl/Ro ~>2). (6) 

Substituting (6) into (5), for the radial stress on the sphere surface, we obtain 

O'rr -- - [ P 0  - 2(1 q- ~2.4_ 2~ 1 cos ~)-3/2.),11 ] (0 ~ ~ ~ It', r l  /> 2). 
R0 

The resulting force which acts on the drop D2 in the gradient field (5) can be presented in the form 

,~/2 ~/2 

F= FR+F , FR: --J _[ f( )cos 
o o 

~ /2  ~ /2  

= / f+(a)da  = -  / f (a )cosada ,  EL 
7f 

where FR and FL are the forces exerted by the right and left hemispheres of the sphere D2 (Fig. 2), respectively. 
Substituting 

f (a)  = a,.,ds = crrr21rxRo da = 2~'R2 [ - Po + 2(1 + ~2 + 2~1 cos a)-3/27: :  ] 
"Ro j sin a da, 

where x = R0 sin a (Fig. 2), into these expressions, we obtain the relation 

F = - 8~rR0"/11 
-2  -2  r l ( r  1 -- 1) (rl = rl/RO ~ 2). (7) 

It follows from the above relation that in the gradient stress field of the sphere D1, a force is applied to 
the sphere D2 (711 = 0 on its surface) in the direction of D1, which is proportional to the radius of the 
spheres and the interphase-tension coefficient on the surface of D1 and inversely proportional to the fourth 
power of the distance between the centers of the spheres which is nondimensionalized over the radius of these 
spheres. Here the constant constituent of the stress field, i.e., the hydrostatic pressure P0, does not affect the 
interaction between the spheres. For example, if the sphere D2 is in the gradient stress field of an olive-oil 
drop in water, substituting " I l l  = 2 .10  -4 N/cm,  P0 = 10 5 Pa, R0 = 0.2 cm into (7), for ~1 = 3 (10 = R0), we 
have F = 1.4.10 -5 H, and F decreases in absolute magnitude to - 1 . 6 . 1 0  -6 N for '~1 = 5 (10 = 3R0). It is 
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noteworthy that, according to the experimental data of [1, 2], the interaction between the drops attenuates 
rapidly for 10 > 1.2R0. 

Evidently, this estimates does not include the circumstance that the interphase tension at the boundary 
of the sphere D2 changes the structure of the gradient stress field; therefore, it is necessary to take into account 
the interaction between the stress fields of both spheres in the next approximation, i.e., to consider the case 
where 711 ~ 0 on the surface of D2 as well, which leads to the formation of a resulting self-consistent stress 
field. Here we do not consider the solution of this problem. We simply note that it is convenient to pass to 
an orthogonal bispherical coordinate system (a,/3, qa) [10] in which the equations of the surfaces of D1 and 
D2 become the simple relations/3 = 130 and/3 = -/30, and the problem can be solved using the Boussinesq 
approximation [11]. 

4. It is necessary to note that, if the motion of the approaching spheres in a liquid matrix occurs 
according to known laws of hydromechanics (the motion of a spherical body in a liquid possessing a certain 
structural viscosity), the mechanism of motion of disperse macroparticles is not evident in the gel (viscous 
thixotropic material). The point is that at a level of shear stresses r not exceeding a certain threshold 
shear stress T., the thixotropic material behaves like an elastic solid, i.e., its elastic properties are due to its 
morphology. For example, for r < r., the gel is a low-viscosity liquid matrix in which while aggregated, the 
macromolecules of the filler (the chemical composition of which was given in [2]) form a complex skeleton 
which imparts elastic properties to the medium. For r > r . ,  the skeleton fails, and the medium becomes a 
sol, i.e., a low-viscosity diluted ultradisperse suspension, and the sphere is able to move in it. 

5. In the physical model of the formation of a gradient stress field in a matrix that has been analyzed 
above, the effect of other factors, except the interphase tension 7ij at the matrix-sphere interface, is not 
allowed for. As is known, real condensed media contain various admixtures which can affect 7ij (in particular, 
cause a change in Vii in time) or form electric fields in the vicinity of the spheres. (In addition, the electric field 
in the vicinity of the drop generates owing to its motion relative to the ambient medium [12].) For example, 
if a liquid matrix contains a sufficiently high concentration of free ions of both signs, absorbing on the DE 
surface, they form double diffuse (Helmholtz) layers; first, these layers reduce the level of 71i and, second, 
form similar electric fields around the spheres. Owing to this, the electrostatic repulsion between the DE can 
attenuate, compensate, or even be greater in intensity than the forces of their mutual attraction, which are 
due to a gradient stress field. As a result, the DE can be attracted together (the fresh drops in a fresh solution 
[1, 2]), can behave neutrally relative to each other (the old drops in an old alcohol-water solution [1]), or 
be repelled from each other (the fresh drops in an old alcohol-water solution [1]). If one increases the ionic 
strength of the solution, the thickness of the double diffuse layer on the DE surface increases and, hence, the 
value of 71i increases; consequently, the rate of their mutual attraction will increase [1]. 

Thus, if the system is completely isolated from the action of external forces, gradient temperature 
fields, and the concentration of the admixtures, the disperse elements in polar liquids or in a thixotropic 
material, in which the DE have interphase-tension coefficient 7ij > 0, are influenced by the resulting gradient 
pressure field. The gradient of this field is very weak and, hence, the interaction between the DE is very weak; 
however, this interaction forces the system of DE to coagulate over large time lapses (from one hour to several 
weeks [1, 21). 
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